Automation, AI, Reliability, Security & Network-as-a-Service
Tuesday, July 29, 2025 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1:15 PM - 2:15 PM | Verizon Case Study: Leveraging AI & Automation for Secure, Reliable, and Scalable Networks Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() This session will cover the future of connectivity, leveraging AI and automation for secure, reliable, and scalable networks. For over a decade, Verizon has been strategically integrating AI into its operations focusing on enhancing internal efficiencies, elevating customer experiences, and optimizing the network infrastructure. Take a deep dive into how Network Operations is using AI to support fault and performance management, forecast and optimize resource utilization, and mitigate risks across Verizon’s network. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2:30 PM - 4:30 PM | The Future of Analytics and Big Data in Telecommunications Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() Telecom network teams must learn how to recognize the key fundamentals of data science and engineering that can help make networks more efficient and streamlined. Attendees will learn how statistics, AI, ML, and automation can help drive data-based network-related decision-making. Finally, this session will share a view of SCTE’s new programs for Python and Data Analytics, and how attendees can earn skill-based badges in these areas. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3:45 PM - 4:45 PM | Empowering Agility and Security with Automation, AI, and Network-as-a-Service Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() Explore how automation, AI and Network-as-a-Service (NaaS) empower organizations to enhance agility, reliability, and security. Learn how AI-driven observability improves network operations and edge decision-making accelerates service deployments from months to minutes. Explore the benefits of NaaS and discover strategies for integration automation, AI, and cloud to enhance your network’s agility. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wednesday, July 30, 2025 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8:00 AM - 9:00 AM | Advances in Powering Network Resilience Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() ![]() Technological innovations in power and energy storage solutions allow operators to improve resilience in networks ranging from RAN to edge data centers, FTTx to Small Cells. Panelists will address questions such as: How do different network topologies cope with a fallible power grid? What solution best fits each application? How do we handle remote sites in distributed networks? How can we meet sustainability challenges and more? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9:15 AM - 10:15 AM | AT&T Case Study: AI and ML Empowers Networks Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() Learn the critical applications of AI and ML across the network by diving into the classification of network use cases, the evolution of AI and ML, and the path to network foundation models. You’ll also learn the role of AI and ML in driving network efficiency and performance, addressing challenges like the volume of devices, complex dynamics, varying traffic, and the need for near real-time management. Attendee Learnings: | Frontier Case Study: Artificial Intelligence - Concepts and Applications for Telecom Professionals Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() While there’s significant "buzz" about AI/ML solving all network evolution woes, few people understand how AI works, and what questions to ask when presented with a problem that a vendor says can be "easily" solved with AI. This session will help leaders and decision-makers clarify terminology, determine AI/ML strengths and weaknesses and gain key insights to separate AI’s promises from its real potential.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thursday, July 31, 2025 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8:00 AM - 9:00 AM | Drive Network Value by Leveraging Gen AI Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() Gen AI adoption is expected to grow from 19% to 48% within two years. CSPs are projected to increase their Gen AI spending by 6X within two years. Attend this session to learn how Gen AI can be used for network monitoring, network operation management, predictive maintenance, cybersecurity, and fraud mitigation. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9:15 AM - 10:15 AM | Leveraging AI and Automation to Streamline Network Data Track: Automation, AI, Reliability, Security & Network-as-a-Service ![]() The adoption of AI is on the rise, with AI in telecommunications expected to grow at a CAGR of 28.2% from 2023 to 2030. Whether you're deploying new fiber networks or maintaining existing ones, AI and automation are becoming essential tools in breaking down data silos, integrating third-party data, keeping as-builts updated, and expediting field data capture. You will learn about integrating diverse information streams into a comprehensive and reliable dataset; migrating data between systems without compromising integrity or security and using AI to enhance data capture and reduce manual workload. |